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Abstract
In setting up a spin Hamiltonian (SH) to study high-spin Zeeman and high-spin nuclear and/or
electronic interactions in electron paramagnetic resonance (EPR) experiments, it is argued that a
maximally reduced SH (MRSH) framed in tesseral combinations of spherical tensor operators is
necessary. Then, the SH contains only those terms that are necessary and sufficient to describe
the particular spin system. The paper proceeds then to obtain interrelationships between the
parameters of the MRSH and those of alternative SHs expressed in Cartesian tensor and Stevens
operator-equivalent forms. The examples taken, initially, are those of Cartesian and Stevens’
expressions for high-spin Zeeman terms of dimension BS3 and BS5. Starting from the
well-known decomposition of the general Cartesian tensor of second rank to three irreducible
tensors of ranks 0, 1 and 2, the decomposition of Cartesian tensors of ranks 4 and 6 are treated
similarly. Next, following a generalization of the tesseral spherical tensor equations, the
interrelationships amongst the parameters of the three kinds of expressions, as derived from
equivalent SHs, are determined and detailed tables, including all redundancy equations, set out.
In each of these cases the lowest symmetry, 1̄ Laue class, is assumed and then examples of
relationships for specific higher symmetries derived therefrom. The validity of a spin
Hamiltonian containing mixtures of terms from the three expressions is considered in some
detail for several specific symmetries, including again the lowest symmetry. Finally, we address
the application of some of the relationships derived here to seldom-observed low-symmetry
effects in EPR spectra, when high-spin electronic and nuclear interactions are present.

1. Introduction

In this paper we wish to establish relationships amongst
the three most commonly used ‘tensorial’ operator forms

1 Present address: 326 Wellington Road, Wainuiomata, New Zealand.

used in EPR spectroscopy with a view to describing how
best to analyse high-spin Zeeman interactions, with terms
of dimension B J n(n = 3, 5), or higher-spin nuclear
and/or electronic interactions, with terms of dimension
J1 J n

2 , J n
1 J2 (J1, J2 = S, I ; n = 3, 5). We use the

descriptor ‘tensorial’ rather loosely because the Stevens’
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operator equivalents for given J do not constitute a tensor.
Nevertheless, for given J and |m| these operators are related
simply by a factor to the corresponding tesseral spherical tensor
operator [1].

Our motives in setting out this work were several.
Firstly, having set the proposition that a tesseral spherical
tensor operator (TSTO) formalism is essential to handle the
interactions that are the subject of this paper, we saw a
need to detail the relationships to alternative formulations, the
Cartesian and Stevens’ forms. Although it is known [1, 2]
that these two latter forms lead, for high-spin terms, to
redundancies if used to set up the spin Hamiltonian (SH),
the detailed redundancy equations have not to our knowledge
been enunciated. We seek herein to remedy this and in
so doing establish conditions under which a SH that may
contain mixtures of TSTOs, Cartesian and Stevens operators
is valid.

Over the last 3–4 decades various forms of irreducible
spherical tensor operators have been used with increasing
frequency in framing a very general SH with which to analyse
electron paramagnetic spectra of centres with any specified
spins, S and I . The reader interested in details of spin
Hamiltonian formalisms is referred to the exhaustive review
by Rudowicz and Misra [3]. For a brief historical survey of
such developments the reader is referred to [2]. In a single
sentence, the advantage of the spherical tensor notation is that
one arrives at a theoretically correct expression that contains
only those terms that are necessary and sufficient to describe
the spin system at hand. Such a SH has been described as
being maximally reduced [4] and there has been an inclination
by some authors, ourselves included, to regard the maximally
reduced SH (MRSH) as being something of a ‘gold standard’
without, perhaps, giving sufficient regard to the meanings of
the parameters therein, or to their relations with those of earlier
SHs. The earlier expressions are of two principal forms,
the Cartesian tensor form as exemplified by a SH commonly
used to frame the well-known second rank ‘tensor’ quantities
g, A, D, P and gn and, the Stevens’ operator forms [5, 6]
used traditionally in expressions describing zero-field splitting
(ZFS) terms when J � 2 (J = S, I ).

If higher-spin Zeeman terms, B J n(n = 3, 5) or higher-
spin nuclear terms of dimensions J1 J n

2 , J n
1 J2 (J1, J2 =

S, I ; n = 3, 5) are included in the SH, it is highly desirable
(if not essential) to use an irreducible tesseral spherical
tensor operator (TSTO) form because both the Cartesian and
Stevens’ expressions although deceptively compact, contain
more (many more in the former case) terms than are necessary.
One can, relatively simply, frame a SH in either of the
Cartesian or Stevens’ forms but, must in addition specify also
the redundancy equations involved. References [1, 2] outlined
in considerable detail the many advantages of the TSTO SH
and specified the number of redundancies involved between
this and the equivalent Stevens’ expressions, but did not detail
the redundancy equations. So far as we are aware, the very
much more complicated case of comparison of the SHs in
Cartesian tensor notation and TSTO notation has never been
reported although detailed tables of all redundancies involved
were calculated by one of us some 16 years ago [28].

Two potential problems arise from the above. Firstly,
our ‘gold standard’ MRSH produces, in principle, an exact
mathematical way of framing the SH and, combined with very
precise measurements, can produce SH parameters that lead
to principal directions of ‘tensors’ comparable in precision
to bond-angle determination in x-ray diffractometry (see for
example [7, 8]); but, what is the significance of the parameters
produced in terms of electron–nuclear interactions? Secondly,
as addressed in a recent paper [9], is it valid to frame a SH in,
for example, a combination of Cartesian (for g, A, D, P and gn),
Stevens’ (for ZFS terms J � 2(J = S, I )) and TSTO forms?
This is an option for example in the international programme
EPR–NMR [10, 11] on the grounds that the Cartesian and
Stevens’ forms are most familiar to would-be users—but, is
the SH thus framed valid when high-spin terms of the type
described above are present? This is a particular question
raised in [9]. We shall address this question later in the
paper.

We shall order the consideration of TSTO, Cartesian
and Stevens’ tensorial (type) notations as follows. We start
from the well-known decomposition of the general 2nd rank
Cartesian tensor to three irreducible tensors of ranks 0, 1
and 2 [12, 13]. We consider next the general extension of
this process and outline the reduction of 4th and 6th rank
Cartesian tensors taking high-spin terms of dimension BS3

and BS5 respectively as examples. Next, the interrelationships
amongst the parameters of the three types of expressions,
as derived from equivalent SHs, are evaluated and detailed
tables set out. In each of these cases the lowest symmetry, 1̄
Laue class, is considered and then examples of relationships
for specific higher symmetries derived there from. The
validity, or otherwise, of a SH containing mixtures of terms
in the three notations is considered in some detail for several
specific symmetries. Finally, the application of some of the
relationships to seldom-observed low-symmetry effects in EPR
spectra when high-spin electronic and nuclear interactions are
present is addressed.

2. Theory section

2.1. Tesseral spherical tensor operators (TSTOs)—definitions

Throughout this paper we shall use the following definitions
for the TSTOs

�k1,k2,k3
k,0 (J1, J2) = T k1,k2,k3

k,0 (J1, J2)

�k1,k2,k3
k,q (J1, J2) = 1√

2
{(−1)q T k1,k2,k3

k,q (J1, J2)

+ T k1,k2,k3
k,−q (J1, J2)}

�k1,k2,k3
k,−q (J1, J2) = i√

2
{(−1)q+1T k1,k2,k3

k,q (J1, J2)

+ T k1,k2,k3
k,−q (J1, J2)}.

(1)

In equation (1), the constituent T k1,k2,k3
k,q (J1, J2) are Koster

and Statz [14] normalized spherical tensor operators where,
herein, one of k1, k2, k3 will always be assumed zero so

2
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Table 1. Single-vector decomposition products of TSTO SHs in the form of equations (9). Refer to section 2.4 for implicit relationships for
other high-spin forms.

Term Single-vector decomposition product

B S 1√
3 B1,1,0

0,0 {−B̂x�1,1(S) − B̂y�1,−1(S) − B̂z�1,0(S)}
1√
6 B1,1,0

2,0 {−B̂x�1,1(S) − B̂y�1,−1(S) + 2B̂z�1,0(S)}
1√
2 B1,1,0

2,1 {B̂z�1,1(S) + B̂x�1,0(S)}
1√
2 B1,1,0

2,−1 {B̂z�1,−1(S) + B̂y�1,0(S)}
1√
2 B1,1,0

2,2 {B̂x�1,1(S) + B̂y�1,−1(S)}
1√
2 B1,1,0

2,−2 {B̂y�1,1(S) + B̂x�1,−1(S)}
B S3 1√

7 B1,3,0
2,0 {−√

3B̂z�3,0(S) − √
2[B̂x�3,1(S) + B̂y�3,−1(S)]}

1√
21 B1,3,0

2,1 {√3B̂x�3,0(S) − 2
√

2B̂z�3,1 − √
5[B̂x�3,2(S) + B̂y�3,−2(S)]}

1√
21 B1,3,0

2,−1 {√3B̂y�3,0(S) − 2
√

2B̂z�3,−1 + √
5[B̂y�3,2(S) − B̂x�3,−2(S)]}

1√
42 B1,3,0

2,2 {B̂x�3,1(S) − B̂y�3,−1(S) − √
10B̂z�3,2(S) − √

15[B̂x�3,3(S) − B̂y�3,−3(S)]}
1√
42 B1,3,0

2,−2 {B̂y�3,1(S) + B̂x�3,−1(S) − √
10B̂z�3,−2(S) + √

15[B̂y�3,3(S) − B̂x�3,−3(S)]}
1√
14 B1,3,0

4,0 {2√
2B̂z�3,0(S) − √

3[B̂x�3,1(S) + B̂y�3,−1(S)]}
1

2
√

14 B1,3,0
4,1 {2√

5B̂x�3,0(S) + √
30Bz�3,1(S) − √

3[B̂x�3,2(S) + B̂y�3.−2(S)]}
1

2
√

14 B1,3,0
4,−1 {2√

5B̂y�3,0(S) + √
30Bz�3,−1(S) + √

3[B̂y�3,2(S) − B̂x�3.−2(S)]}
1

2
√

14 B1,3,0
4,2 {√15[B̂x�3,1(S) − B̂y�3,−1(S)] + 2

√
6B̂z�3,2(S) − [B̂x�3,3(S) + B̂y�3,−3(S)]}

1
2
√

14 B1,3,0
4,−2 {√15[B̂y�3,1(S) − B̂x�3,−1(S)] + 2

√
6B̂z�3,−2(S) + [B̂x�3,3(S) − B̂y�3,−3(S)]}

1
2
√

2 B1,3,0
4,3 {√3[B̂x�3,2(S) − B̂y�3,−2(S)] + √

2B̂z�3,3(S)}
1

2
√

2 B1,3,0
4,−3 {√3[B̂y�3,2(S) + B̂x�3,−2(S)] + √

2B̂z�3,−3(S)}
1√
2 B1,3,0

4,4 {B̂x�3,3(S) − B̂y�3,−3(S)}
1√
2 B1,3,0

4,−4 {B̂y�3,3(S) + B̂x�3,−3(S)}

that, as required, the number of non-zero superscripts and
the number of vector arguments is equal. That is, we shall
consider two-vector operators only and, frequently, we shall
use shorthand versions of the operators such as �k,q or T 1,1

k,q
when no ambiguity is involved. Single-vector forms, Tk,q (J),
of these operators have been listed by Buckmaster et al [15]
for 0 � k � 7. In this paper, the Buckmaster et al
compilation, that is known to be correct, will be regarded
as the ‘basis set’ of spherical tensor operators. In EPR,
the superscripts k1, k2, k3 are written frequently as �B , �S, �I

with �B + �S + �I = � = even to preserve time reversal
invariance.

Equations such as (1) can be decomposed to useable
single-vector form via

T k1,k2
k,q =

k1∑

q1=−k1

k2∑

q2=−k2

(−1)k1+k2+q(2k + 1)1/2

×
(

k1 k2 k
q1 q2 −q

)
Tk1,q1 Tk2,q2 . (2)

In (2)
( k1 k2 k

q1 q2 −q

)
is a Wigner 3 j coefficient that is

automatically zero unless both q1 + q2 = −q and the triangle
condition |k1 − k2| � k � k1 + k2 are satisfied [12].

As a simple example, we consider the SH comprising first-
degree linear electronic Zeeman terms, J1 = B; J2 = S; k1 =

k2 = 1 and k3 = 0, that may be represented in irreducible
TSTO form as

H 1,1,0
S = μB B

{
B1,1,0

0,0 �1,1,0
0,0 (B̂, S) +

2∑

m=−2

B1,1,0
2,m �1,1,0

2,m (B̂, S)

}
.

(3)

Equation (3) can be decomposed into single-vector form
utilizing (2) [1] to give

H 1,1,0
S = μB B

{
B1,1,0

0,0 U1,0,0 +
2∑

m=−2

(B1,1,0
2,m U1,2,m)

}
(4)

where the U j,�,m( j = 1) are linear functions of single-vector
TSTOs. These linear functions have been tabulated [1] for
j = 1, 3, 5 (and also for terms quadratic in magnetic field).
For the convenience of readers these tables, for j = 1, 3 are
reproduced, in slightly more explicit form, in table 1 of this
paper.

2.2. Decomposition of Cartesian tensors of rank 2

These ‘tensors’, more correctly described as 3 × 3 parameter
matrices, are those used commonly in expressions of the type

HS = μBBT · g · S + IT · A · S + ST · D · S

+ IT · P · I − μnBT · gn · I (5)

3
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where the terms have their customary meanings. The operators
are column vectors and the superscript T indicates transpose,
i.e., BT, for example, is a row vector. In general one should
consider the 3 × 3 parameter matrices as asymmetric and we
shall write them, using the leading electronic Zeeman term as
example, in Cartesian tensor form as

H 1,1,0
S = μB B

∑

j=x,y,z

∑

�=x,y,z

g j,� B̂ j S�. (6)

It should be noted that in some references, for example [1, 2],
the leading factor in equations like (4) has been written geμB B
rather than μB B and this needs to be taken into account when
considering the magnitudes of the derived parameters.

In equation (6), B̂ represents a unit vector, with
components B̂x, B̂y, B̂z , along which the magnetic field is
directed. It is well known that the 3 × 3 asymmetric Cartesian
tensor of second rank is reducible to three irreducible tensors
of ranks 0, 1 and 2, the latter being symmetric and traceless
(see, for example, [12, 13]). The reduction corresponds to the
operation

D1 × D1 = D0 + D1 + D2 (7)

in terms of the representations, D j , of the rotation group.
Symmetry in the g matrix is imposed via 3 redundancy
equations g j,� = g�, j( j �= �). The 1st rank anti-symmetric
tensor (a vector) then disappears and the reduction is to a zero
rank tensor and second rank symmetric and traceless tensor.
There are other ways of describing this reduction but the above
will be convenient in generalizing the process for Cartesian
tensors of higher ranks.

Comparing coefficients of operators in (4) and (6), the
following relations, with B parameters as subject, are obtained

B1,1,0
0,0 = − 1√

3
(gxx + gyy + gzz) (8a)

B1,1,0
2,0 =

√
2√
3

{
−1

2
(gxx + gyy) + gzz

}

B1,1,0
2,2 = 1√

2
(gxx − gyy) B1,1,0

2,−2 = √
2gxy

B1,1,0
2,1 = √

2gxz B1,1,0
2,−1 = √

2gyz.

(8b)

Equation (8a) is a zero rank tensor (a scalar) and (8b) a second
rank tensor. In section 3.1 below, we shall show similarly
that a 4th rank Cartesian tensor is expressible as a sum of two
irreducible tensors of ranks 2 and 4 and a 6th rank Cartesian
tensor as a sum of two irreducible tensors of ranks 4 and 6.

From equations (8a) and (8b) 6 B parameters of the
irreducible TSTO form are related by linear equations to 6 only
parameters of the symmetric Cartesian tensor, g. The latter
three terms in (8b) are zero for D2h symmetry (i.e., diagonal g
tensor) and, if uniaxial symmetry is imposed, we obtain simply

B1,1,0
0,0 = − 1√

3
(2g⊥ + g‖) B1,1,0

2,0 =
√

2√
3
(−g⊥ + g‖).

(8c)
Each of the symmetric 3 × 3 matrices g, A, D, P and gn of (5)
can be expressed similarly in terms of B parameters—see for
example [16, 1, 2].

2.3. Extension to Cartesian tensors of ranks 4 and 6

In this section we shall continue to use, as examples, the
linear and higher-order electronic Zeeman interactions. For
completeness, and for use in section 2.4, we shall give
expressions also for the corresponding terms expressed in
Stevens’ operators. The complete set of relations is

(i) in tesseral spherical tensor form

H 1,1,0
S = μB B

{
B1,1,0

0,0 �0,0(B̂, S)

+
2∑

m=−2

B1,1,0
2,m �2,m(B̂, S)

}

H 1,3,0
S = μB B

{ 2∑

m=−2

B1,3,0
2,m �2,m(B̂, S)

+
4∑

m=−4

B1,3,0
4,m �4,m(B̂, S)

}

H 1,5,0
S = μB B

{ 4∑

m=−4

B1,5,0
4,m �4,m(B̂, S)

+
6∑

m=−6

B1,5,0
6,m �6,m(B̂, S)

}

(9)

(ii) in Stevens’ operator form

H 1,1,0
S = μB B

∑

j=x,y,z

1∑

q=−1

B̂ j Bq
1 j Ōq

1

H 1,3,0
S = μB B

∑

j=x,y,z

3∑

q=−3

B̂ j Bq
3 j Ōq

3

H 1,5,0
S = μB B

∑

j=x,y,z

5∑

q=−5

B̂ j Bq
5 j Ōq

5

(10)

(iii) in Cartesian tensor form

H 1,1,0
S = μB B

∑

j=x,y,z

∑

�=x,y,z

g j,� B̂ j S�

H 1,3,0
S = μB B

∑

j=x,y,z

∑

�=x,y,z

×
∑

m=x,y,z

∑

n=x,y,z

g j,�mn B̂ j S�Sm Sn

H 1,5,0
S = μB B

∑

j=x,y,z

∑

�=x,y,z

∑

m=x,y,z

∑

n=x,y,z

×
∑

p=x,y,z

∑

r=x,y,z

g j,�mnpr B̂ j S�Sm Sn Sp Sr .

(11)

At first sight each of equations (10) and (11) appears a
more compact way of expressing the SH for such terms but
both are reducible. In equations (10), for example, 21 BS3

terms reduce to 14 and 33 BS5 terms reduce to 22, i.e., 7
and 11 redundancy equations respectively are required. These
are results that we have stated earlier [1, 2], and shall return

4
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Table 2. Redundancies amongst the B J n(n = 1, 3, 5; J = S, I ) Cartesian parameters for electronic and nuclear Zeeman terms expressed in
the form of equation (11). In the generic equations listed j, �, m and n represent any one of x, y or z under the restrictions shown.

SH term Generic equation No. of equations

B S gj,� = g�, j j �= � 3
Total 3

B S3 gj,�mm = g�, jmm j �= � �= m 3
gj,�xx + gj,�yy + gj,�zz = 0 9
gj,��� − g�, j�� = 2(gj,mm� − gm, jm�) j �= � �= m 3
gx,xyy + gy,yzz + gz,zxx = gy,yxx + gx,xzz + gz,zyy = − 1

2 (gx,xxx + gy,yyy + gz,zzz ) 1
Total 16

B S5 gj,�mmmm = g�, jmmmm j �= � �= m 3
gj,�mnxx + gj,�mnyy + gj,�mnzz = 0 30
gj,����� − g�, j���� = 4(gj,mm��� − gm, jm���) j �= � �= m 6
(gj, jmmmm + gm,mj j j j ) − (g�,�mmmm + gm,m����) = 3(gj, j��mm − g�,�j jmm) j �= � �= m 2

Total 41

to in section 2.4. For the moment we are interested in the
interrelations between (10) and (11).

The reduction according to equation (7) can be
generalized [13] for Cartesian tensors of higher ranks to

D j1 × D j2 =
j1+ j2∑

j=| j1− j2|
D j . (12)

Utilizing equation (12), a Cartesian tensor of rank 4 reduces as

3D0 + 6D1 + 6D2 + 3D3 + D4

with 3 × 1 + 6 × 3 + 6 × 5 + 3 × 7 + 9 = 34 components.
Likewise, a Cartesian tensor of rank 6 reduces as

15D0 + 36D1 + 40D2 + 29D3 + 15D4 + 5D5 + D6

with 15×1+36×3+40×5+29×7+15×9+5×11+13 = 36

components.
Ideally, in order to match the number of independent

parameters involved, we should like to be able to reduce the
BS3 Cartesian tensor of (11) to the sum of two irreducible
tensors of ranks 2 and 4 and likewise the BS5 Cartesian tensor
to the sum of two irreducible tensors of ranks 4 and 6 where the
parameters are related linearly to those of the TSTO form and
where redundancies between the two formalisms can be stated.
Since 81 and 729 components of the 4th and 6th rank tensors
must be reduced to 14 and 22 respectively, the task is evidently
reasonably formidable.

One can reduce greatly the number of independent
parameters in the 4th and 6th rank Cartesian tensors using
the permutation rule. By this rule the Cartesian tensor
elements, g j,�mn for example from (11), are equal if they are
related solely by a permutation of the subscripts associated
with components of the same vector, the vector S in the
example given. (The vector components themselves are of
course still bound by their commutation relationships.) On
applying the permutation rule, 81 parameters of the 4th rank
tensor reduce to 30, and 729 parameters of the tensor of
rank 6 reduce to 63. One must specify then 16 redundancy
relationships for the 4th rank tensor and 41 redundancy

relationships for the 6th rank tensor in order to match the
parameter numbers in each case to the irreducible spherical
tensor forms.

The relationships between the parameters in the TSTO
notation of (9) and the Cartesian tensor notation of (11)
are established as follows. First, the two-vector operators
of equations (9) are decomposed into single-vector forms
as outlined in [1] utilizing table 1. The single-vector
tesseral operators, �k,q , are converted to linear combinations
of products of spin-vector components, Sx , Sy and Sz , thus
producing expressions of the form of (11), but with coefficients
B1,k2,0

k,q . Comparing coefficients of operators between (11) and
the converted TSTO forms one obtains sets of simultaneous
linear equations relating parameters in the two notations. By
eliminating parameters B1,k2,0

k,q from these simultaneous linear
equations, linear equations relating the Cartesian parameters
were found. These (generic) equations, listed in table 2,
express the redundancies amongst the Cartesian parameters.
The appropriate sets of simultaneous linear equations are listed
in column three of table 3. These results, as summarized
in tables 2 and 3, are for the most general case, that of
the paramagnetic ion occupying a site of 1̄ Laue class.
To our knowledge, these relationships have not appeared
previously.

To make clear the procedure of the previous paragraph,
we detail a simple example, that of BS3 terms for a uniaxial
case, D4h (=4/mmm) symmetry. Then, from equations (9) and
table 1, we obtain the following single-vector TSTO SH

H 1,3,0
S = 1√

7
B1,3,0

2,0 {−√
3B̂z�3,0(S)

− √
2[B̂x�3,1(S) + B̂y�3,−1(S)]}

+ 1√
14

B1,3,0
4,0 {2√

2B̂z�3,0(S)

− √
3[B̂x�3,1(S) + B̂y�3,−1(S)]}

+ 1√
2

B1,3,0
4,4 {B̂x�3,3(S) − B̂y�3,−3(S)}. (13)
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Table 3. Cartesian tensor elements as defined in equations (11) as linear functions of tesseral spherical tensor parameters as defined in
equations (9).

SH term
Tensor
element Linear function of tesseral spherical tensor parameters

B S gx,x − 1√
3 B1,1,0

0,0 − 1√
6 B1,1,0

2,0 + 1√
2 B1,1,0

2,2

gx,y
1√
2 B1,1,0

2,−2

gx,z
1√
2 B1,1,0

2,1

gy,x
1√
2 B1,1,0

2,−2

gy,y − 1√
3 B1,1,0

0,0 − 1√
6 B1,1,0

2,0 − 1√
2 B1,1,0

2,2

gy,z
1√
2 B1,1,0

2,−1

gz,x
1√
2 B1,1,0

2,1

gz,y
1√
2 B1,1,0

2,−1

gz,z − 1√
3 B1,1,0

0,0 +
√

2√
3 B1,1,0

2,0

B S3 gx,xxx

√
3√
70 B1,3,0

2,0 − 1√
70 B1,3,0

2,2 + 3
2
√

70 B1,3,0
4,0 − 1√

14 B1,3,0
4,2 + 1

2
√

2 B1,3,0
4,4

gx,xxy − 4
√

2
3
√

35 B1,3,0
2,−2 − 1

2
√

14 B1,3,0
4,−2 + 1

2
√

2 B1,3,0
4,−4

gx,xxz − 4
√

2
3
√

35 B1,3,0
2,1 − 3

4
√

7 B1,3,0
4,1 + 1

4 B1,3,0
4,3

gx,xyy
1√
210 B1,3,0

2,0 +
√

7
3
√

10 B1,3,0
2,2 + 1

2
√

70 B1,3,0
4,0 − 1

2
√

2 B1,3,0
4,4

gx,xyz −
√

5
3
√

14 B1,3,0
2,−1 − 1

4
√

7 B1,3,0
4,−1 + 1

4 B1,3,0
4,−3

gx,xzz − 2
√

2√
105 B1,3,0

2,0 +
√

2
3
√

35 B1,3,0
2,2 −

√
2√
35 B1,3,0

4,0 + 1√
14 B1,3,0

4,2

gx,yyy

√
2√
35 B1,3,0

2,−2 − 1
2
√

14 B1,3,0
4,−2 − 1

2
√

2 B1,3,0
4,−4

gx,yyz

√
2

3
√

35 B1,3,0
2,1 − 1

4
√

7 B1,3,0
4,1 − 1

4 B1,3,0
4,3

gx,yzz

√
2

3
√

35 B1,3,0
2,−2 + 1√

14 B1,3,0
4,−2

gx,zzz

√
2√
35 B1,3,0

2,1 + 1√
7 B1,3,0

4,1

gy,xxx

√
2√
35 B1,3,0

2,−2 − 1
2
√

14 B1,3,0
4,−2 + 1

2
√

2 B1,3,0
4,−4

gy,xxy
1√
210 B1,3,0

2,0 −
√

7
3
√

10 B1,3,0
2,2 + 1

2
√

70 B1,3,0
4,0 − 1

2
√

2 B1,3,0
4,4

gy,xxz

√
2

3
√

35 B1,3,0
2,−1 − 1

4
√

7 B1,3,0
4,−1 + 1

4 B1,3,0
4,−3

gy,xyy − 4
√

2
3
√

35 B1,3,0
2,−2 − 1

2
√

14 B1,3,0
4,−2 − 1

2
√

2 B1,3,0
4,−4

gy,xyz −
√

5
3
√

14 B1,3,0
2,1 − 1

4
√

7 B1,3,0
4,1 − 1

4 B1,3,0
4,3

gy,xzz

√
2

3
√

35 B1,3,0
2,−2 + 1√

14 B1,3,0
4,−2

gy,yyy

√
3√
70 B1,3,0

2,0 + 3√
70 B1,3,0

2,2 + 3
2
√

70 B1,3,0
4,0 + 1√

14 B1,3,0
4,2 + 1

2
√

2 B1,3,0
4,4

gy,yyz − 4
√

2
3
√

35 B1,3,0
2,−1 − 3

4
√

7 B1,3,0
4,−1 − 1

4 B1,3,0
4,−3

gy,yzz − 2
√

2√
105 B1,3,0

2,0 −
√

2
3
√

35 B1,3,0
2,2 −

√
2√
35 B1,3,0

4,0 − 1√
14 B1,3,0

4,2

gy,zzz

√
2√
35 B1,3,0

2,−1 + 1√
7 B1,3,0

4,−1

gz,xxx

√
2√
35 B1,3,0

2,1 − 3
4
√

7 B1,3,0
4,1 + 1

4 B1,3,0
4,3

gz,xxy

√
2

3
√

35 B1,3,0
2,−1 − 1

4
√

7 B1,3,0
4,−1 + 1

4 B1,3,0
4,−3

gz,xxz

√
3√
70 B1,3,0

2,0 −
√

5
3
√

14 B1,3,0
2,2 −

√
2√

35 B1,3,0
4,0 + 1√

14 B1,3,0
4,2

gz,xyy

√
2

3
√

35 B1,3,0
2,1 − 1

4
√

7 B1,3,0
4,1 − 1

4 B1,3,0
4,3

gz.xyz −
√

5
3
√

14 B1,3,0
2,−2 + 1√

14 B1,3,0
4,−2

gz,xzz − 4
√

2
3
√

35 B1,3,0
2,1 + 1√

7 B1,3,0
4,1

gz,yyy

√
2√
35 B1,3,0

2,−1 − 3
4
√

7 B1,3,0
4,−1 − 1

4 B1,3,0
4,−3

gz.yyz

√
3√
70 B1,3,0

2,0 +
√

5
3
√

14 B1,3,0
2,2 −

√
2√

35 B1,3,0
4,0 − 1√

14 B1,3,0
4,2

gz,yzz − 4
√

2
3
√

35 B1,3,0
2,−1 + 1√

7 B1,3,0
4,−1

gz,zzz −
√

6√
35 B1,3,0

2,0 + 2
√

2√
35 B1,3,0

4,0

6
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We then require the TSTOs of (13) expressed in terms of
spin operators, Sx , Sy and Sz , namely

�3,0(S) = 1√
10

{5S3
z + [1 − 3S(S + 1)]Sz}

= 1√
10

{5S3
z + (h̄2 − 3S2)Sz}

= 1√
10

{2S3
z − 3S2

x Sz − 3S2
y Sz + h̄2Sz}

�3,1(S) =
√

3

4
√

5

{
Sx

[
4S2

z − S2
x − S2

y − h̄2

2

]

+
[

4S2
z − S2

x − S2
y − h̄2

2

]
Sx

}

�3,−1(S) =
√

3

4
√

5

{
Sy

[
4S2

z − S2
x − S2

y − h̄2

2

]

+
[

4S2
z − S2

x − S2
y − h̄2

2

]
Sy

}

�3,3(S) = 1
2 {S3

x − Sx S2
y − Sy Sx Sy − S2

y Sx}
�3,−3(S) = − 1

2 {S3
y − Sy S2

x − Sx Sy Sx − S2
x Sy}.

(14)

Next, we require the expansion of the second equation of
equation (11), applying the permutation rule to reduce 81 terms
to 30, but retaining all operator combinations to preserve the
non-commutativity of the operators Sx , Sy and Sz . Comparing
coefficients, g j,�mn, of operators in this expansion with the
three B1,3,0

k,q (k = 2, 4; q = 0, 4) coefficients of equations (13)
of the same operators in equations (14), we obtain the
following set of simultaneous linear equations

gx,xxx =
√

3√
70

B1,3,0
2,0 + 3

2
√

70
B1,3,0

4,0 + 1

2
√

2
B1,3,0

4,4

gx,xyy = 1√
210

B1,3,0
2,0 + 1

2
√

70
B1,3,0

4,0 − 1

2
√

2
B1,3,0

4,4

gx,xzz = − 2
√

2√
105

B1,3,0
2,0 −

√
2√

35
B1,3,0

4,0

gy,yxx = 1√
210

B1,3,0
2,0 + 1

2
√

70
B1,3,0

4,0 − 1

2
√

2
B1,3,0

4,4

gy,yyy =
√

3√
70

B1,3,0
2,0 + 3

2
√

70
B1,3,0

4,0 + 1

2
√

2
B1,3,0

4,4

gy,yzz = − 2
√

2√
105

B1,3,0
2,0 −

√
2√

35
B1,3,0

4,0

gz,zxx =
√

3√
70

B1,3,0
2,0 −

√
2√
35

B1,3,0
4,0

gz,zyy =
√

3√
70

B1,3,0
2,0 −

√
2√

35
B1,3,0

4,0

gz,zzz = −
√

6√
35

B1,3,0
2,0 + 2

√
2√

35
B1,3,0

4,0 .

(15)

By eliminating the B1,3,0
k,q parameters from equations (15) we

obtain the following set of redundancy equations amongst the

g j,�mn parameters.

gx,xxx = gy,yyy gx,xyy = gy,yxx

gx,xzz = gy,yzz gz,zxx = gz,zyy

(16a)

and
gx,xxx + gx,xyy + gx,xzz = 0

gy,yxx + gy,yyy + gy,yzz = 0

gz,zxx + gz,zyy + gz,zzz = 0.

(16b)

Equations (16) allow the reduction from 9 parameters in (15)
to three only independent parameters, for example

gz,zzz = g‖ gx,xxx = gy,yyy = g⊥ gx,xyy (17)

thus matching in number and type (coefficients of 2nd and 4th
rank tensors respectively) the three B parameters of (13). It can
be verified easily that the relationships (15)–(17) are obtained
from the general relationships for 1̄ Laue class in table 2 after
making appropriate symmetry assumptions.

2.4. Generalization of the TSTO equations

So far we have treated only the case of electronic and nuclear
Zeeman higher-order terms. The TSTO forms utilized in
equations (8) can, however, be generalized to [2]

H k1,k2
S = G

{ k1+k2∑

q=−|k1−k2|
Bk1,k2

|k1−k2|,q�k1,k2
|k1−k2|,q(V, W)

+
k1+k2∑

q=−|k1−k2 |
Bk1,k2|k1+k2 |,q�k1,k2|k1+k2 |,q(V, W)

}
(18)

where the vectors V, W can represent any one of B, S, I. For
Zeeman terms, V = B̂ (a unit vector along which the magnetic
field is directed), W = J (J = S, I) and G = μB B or −μn B
according as J = S, I respectively. Equations of the form of (9)
are generated thereby with dimensionless parameters, B1,k2,0

k,q ,
that are properties of the paramagnetic centre, independent of
the applied magnetic field.

Taking G = 1/2, the equation

H 0,k2,0
S =

k2∑

q=−k2

B0,k2,0
k2,q

�0,k2,0
k2,q

(B̂, J) (19)

represents ZFS electronic terms of dimension Sk2 (k2 =
2, 4 or 6); In this case, B̂ is a unit vector in an
arbitrary direction and can be omitted. Similarly the
superscripts in (19) can, without ambiguity, be omitted
leading to more familiar expressions for zero-field terms
of dimension Sk2 . Similar expressions for ZFS terms of
dimension I k3 are obtained by writing the third superscript
as k3. As in section 2.3, equation (19) can be
compared to the equivalent expressions in Cartesian notation,
namely

H 0,2,0
S =

∑

j=x,y,z

∑

�=x,y,z

D j� J j J�

H 0,4,0
S =

∑

j=x,y,z

∑

�=x,y,z

∑

m=x,y,z

∑

n=x,y,z

D j�mn J j J� Jm Jn

(20)
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and linear relationships between the D parameters and the
Bk2,q parameters obtained. These parameters are listed
in table 3 and have dimensions of energy. Clearly the
process is extended readily to tensors of rank 6 and
higher.

Finally, the unit vector B̂ in equations (9) has components

B̂z = �1,0(B̂) B̂x = �1,1(B̂) B̂y = �1,−1(B̂).

(21a)
It follows, on replacing equations (21a) with equations (21b)

Jz = �1,0(J) Jx = �1,1(J)

Jy = �1,−1(J) (J = S, I)
(21b)

and G = 1 in equation (18) that, implicitly covered in (18)
and in the single-vector decompositions of table 1, are terms
of dimension SI n and Sn I (n = 1, 3, 5). The corresponding
tesseral spherical tensor parameters, B0,k2,k3

k,q , have dimensions
of energy. (In [1] we considered also terms of dimension B2Sk2

with parameters B2,k2,0
k,q (dimensions, (energy)−1). Such terms,

quadratic in magnetic field may well become important in the
analysis of high-field spectra, W-band for example, but we
shall not be considering them further in this paper.) We shall
be treating all terms, outlined in this section, in a later section
of the paper.

2.5. Relations between TSTO parameters and Stevens’
parameters

The relationships between these two forms are established
readily because each is proportional to tesseral combinations
of operators that transform like spherical harmonic functions.
Thus, from [17, 1] we obtain

Ōq
k = Aq

k �k,q . (22)

An extensive listing of the factors Aq
k (q � 8) has been given

in [1]. It is necessary to point out that the Ōq
k functions refer

to the ‘complete’ or, after Rudowicz [18], ‘extended’ set of
Stevens’ operators, −q � k � q , and not merely those for
q � 0 as in many earlier listings.

We shall now outline briefly the establishment of the
redundancy equations between the forms (9) and (10) where,
again, we use as example the electronic Zeeman interaction for
terms of dimension BS3. Expanding (10) we obtain

H 1,3
S = μB B

j�2S∑

j=1

{B̂x(B0
3x Ō0

3 + B1
3x Ō1

3 + B−1
3x Ō−1

3 + · · ·

+ B3
3x Ō3

3 + B−3
3x Ō−3

3 ) + B̂y(B0
3y + · · ·)

+ B̂z(B0
3z + · · ·)} (23)

i.e., 3 × 7 = 21 terms. Then, from equation (23) of [1] and
table 1 we have terms

B̂x

(
1√
7

B2,1 +
√

5√
14

B4,1

)
�3,0

B̂x

(
−

√
2√
7

B2,0 + 1√
42

B2,2 −
√

3√
14

B4,0 +
√

15

2
√

14
B4,2

)
�3,1

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

B̂x

(
−

√
5√

14
B2,−2 − 1

2
√

14
B4,−2 + 1√

2
B4,−4

)
�3,−3

i.e., seven relationships. Then, for example, Ō0
3 = √

10�3,0

(equation (2) and table 1 of [1]), so that on equating operator
coefficients we obtain

B̂x

(
1√
7

B2,1 +
√

5√
14

B4,1

)
�3,0 = B̂x B3x Ō0

3 = B̂x B0
3x

√
10�3,0

leading to B0
3x = 1√

70 B2,1 + 1
2
√

7 B4,1 and, similarly,

six other equations, B̂3x(−3 � m � 3). We
must repeat the same process for terms in B̂y�3,m and
B̂z�3,m and obtain finally 21 expressions giving Stevens’
parameters in terms of the spherical tensor coefficients,
B1,3

2,m and B1,3
4,m . These relationships along with those for

terms of dimension S2, S4, BS, BS3 and BS5 are listed
in table 5. The tensor parameters B1,3

2,mand B1,3
4,m are

members of irreducible tensors of ranks 2 (5 components)
and 4 (9 components) respectively and hence it is clear
that the 21 expressions for Stevens’ parameters must be
reducible. Solving the Stevens’ expressions simultaneously
leads to 14 (non-unique) linear relationships with the tensor
components as subject. Consideration of the alternatives
leads to seven redundancy relationships amongst the Stevens’
parameters. These are listed in table 6 along with the
3 redundancy relationships for terms of dimension BS,
(7 for terms of dimension BS3) and the 11 for terms
of dimension BS5. The redundancy equations of
table 6 have been independently calculated and verified by
Kliava [29].

3. Discussion

3.1. Symmetry considerations

In deriving the relationships of tables 3–6 we have not assumed
any symmetry constraints, with the exception that the SH
must be invariant to the inversion operation. Hence, the
tables produced are those appropriate to 1̄ Laue class—that
is, triclinic (1 = C1) point-group symmetry + the (space)
inversion operation. By imposing appropriate symmetry
constraints we can then, from the general tables 3–6 obtain
the relationships for any of the other 10 Laue classes or,
alternatively, for the lowest-symmetry member of a given
Laue class, the corresponding rotation point group. The Laue
class of the site of a paramagnetic centre is intuitively the
more useful because, in the absence of extra intelligence on
a particular problem, the EPR experiment alone does not
distinguish the point-group symmetries of the members (point
groups) of a given Laue class. In the following therefore we
shall restrict ourselves to specific choices from the 11 Laue
crystal classes.

The tables that we have appended each list expressions
where the Cartesian tensor element or Stevens’ parameter
is given as a linear function of irreducible spherical tensor
components, Bk1,k2,k3

k,q with one of k1, k2, k3 zero. It is often
more useful however to have the equivalent expression with
the spherical tensor parameter as subject and we now do this
for Laue class 1̄ restricting attention to the TSTO and Cartesian
forms, equations (9) and (11). We shall make use also of some
of the relationships of section 2.4 above.
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Table 4. Cartesian tensor elements defined in equations (20) as
linear functions of tesseral tensor parameters defined in
equations (18) and (19) for ZFS terms of dimension Sk2 (k2 = 2, 4).
The same linear functions of parameters for terms of dimension I k2

are obtained except that the superscripts are 0, 0, k2.

SH
term

Tensor
element Linear function of tesseral tensor parameters

S2 Dxx − 1√
6 B0,2,0

2,0 + 1√
2 B0,2,0

2,2

Dxy
1√
2 B0,2,0

2,−2

Dxz
1√
2 B0,2,0

2,1

Dyy − 1√
6 B0,2,0

2,0 − 1√
2 B0,2,0

2,2

Dyz
1√
2 B0,2,0

2,−1

Dzz

√
2√
3 B0,2,0

2,0

S4 Dxxxx
3

2
√

70 B0,4,0
4,0 − 1√

14 B0,4,0
4,2 + 1

2
√

2 B0,4,0
4,4

Dxxxy − 1
2
√

14 B0,4,0
4,−2 + 1

2
√

2 B0,4,0
4,−4

Dxxxz − 3
4
√

7 B0,4,0
4,1 + 1

4 B0,4,0
4,3

Dxxyy
1

2
√

70 B0,4,0
4,0 − 1

2
√

2 B0,4,0
4,4

Dxxyz − 1
4
√

7 B0,4,0
4,−1 + 1

4 B0,4,0
4,−3

Dxxzz −
√

2√
35 B0,4,0

4,0 + 1√
14 B0,4,0

4,2

Dxyyy − 1
2
√

14 B0,4,0
4,−2 − 1

2
√

2 B0,4,0
4,−4

Dxyyz − 1
4
√

7 B0.4,0
4,1 − 1

4 B0,4,0
4,3

Dxyzz
1√
14 B0,4,0

4,−2

Dxzzz
1√
7 B0,4,0

4,1

Dyyyy
3

2
√

70 B0,4,0
4,0 + 1√

14 B0,4,0
4,2 + 1

2
√

2 B0,4,0
4,4

Dyyyz − 3
4
√

7 B0,4,0
4,−1 − 1

4 B0,4,0
4,−3

Dyyzz −
√

2√
35 B0,4,0

4,0 − 1√
14 B0,4,0

4,2

Dyzzz
1√
7 B0,4,0

4,−1

Dzzzz
2
√

2√
35 B0,4,0

4,0

In this instance, we shall consider a SH for high-spin
terms of dimension SI 3 (refer to equations (21)) in a site of
1̄ Laue class where the Cartesian parameters may be labelled
C j,�mn and the related TSTO parameters, B0,1,3

2,m and B0,1,3
4,m .

We wish to make the Bs subjects of linear relationships and,
utilizing the redundancy relationships of table 2, ensure that
there are equal numbers of B and C parameters. It turns out
that the calculation is relatively straightforward. Inspection of
the relationships of table 3 reveals that there are

• 9 equations containing at least two of B0,1,3
2,0 , B0,1,3

2,2 , B0,1,3
4,0 ,

B0,1,3
4,2 , B0,1,3

4,4 and no other,

• 7 equations containing at least two of B0,1,3
2,−2 , B0,1,3

4,−2 , B0,1,3
4,−4

and no other,
• 7 equations containing at least two of B0,1,3

2,1 , B0,1,3
4,1 , B0,1,3

4,3
and no other and,

• 7 equations containing at least two of B0,1,3
2,−1 , B0,1,3

4,−1 , B0,1,3
4,−3

and no other.

That is, we obtain a total of 30 equations containing
9 + 5 = 14 B0,1,3

j,m parameters and, as already noted, 16
redundancy equations. Utilizing the latter, from table 2, we

Table 5. Stevens’ parameters defined in equations (10) as linear
functions of tesseral tensor parameters defined in equations (9)
and (19).

SH
term

Stevens,
parameter Linear function of tesseral tensor parameters

S2 B0
2

1√
6 B0,2,0

2,0

B1
2

√
2B0,2,0

2,1

B−1
2

√
2B0,2,0

2,−1

B2
2

1√
2 B0,2,0

2,2

B−2
2

1√
2 B0,2,0

2,−2

S4 B0
4

1
2
√

70 B0,4,0
4,0

B1
4

1√
7 B0,4,0

4,1

B−1
4

1√
7 B0,4,0

4,−1

B2
4

1√
14 B0,4,0

4,2

B−2
4

1√
14 B0,4,0

4,−2

B3
4 B0,4,0

4,3

B−3
4 B0,4,0

4,−3

B4
4

1
2
√

2 B0,4,0
4,4

B−4
4

1
2
√

2 B0,4,0
4,−4

B S B0
1x

1√
2 B1,1,0

2,1

B1
1x − 1√

3 B1,1,0
0,0 − 1√

6 B1,1,0
2,0 + 1√

2 B1,1,0
2,2

B−1
1x

1√
2 B1,1,0

2,−2

B0
1y

1√
2 B1,1,0

2,−1

B1
1y

1√
2 B1,1,0

2,−2

B−1
1y − 1√

3 B1,1,0
0,0 − 1√

6 B1,1,0
2,0 − 1√

2 B1,1,0
2,2

B0
1z − 1√

2 B1,1,0
0,0 +

√
2√
3 B1,1,0

2,0

B1
1z

1√
2 B1,1,0

2,1

B−1
1z

1√
2 B1,1,0

2,−1

B S3 B0
3x

1√
70 B1,3,0

2,1 + 1
2
√

7 B1,3,0
4,1

B1
3x −

√
3√
70 B1,3,0

2,0 + 1
2
√

70 B1,3,0
2,2 − 3

2
√

70 B1,3,0
4,0

+ 3
4
√

14 B1,3,0
4,2

B−1
3x

1
2
√

70 B1,3,0
2,−2 + 3

4
√

14 B1,3,0
4,−2

B2
3x −

√
5√
14 B1,3,0

2,1 − 3
4
√

7 B1,3,0
4,1 + 3

4 B1,3,0
4,3

B−2
3x −

√
5√
14 B1,3,0

2,−1 − 3
4
√

7 B1,3,0
4,−1 + 3

4 B1,3,0
4,−3

B3
3x −

√
5

2
√

14 B1,3,0
2,2 − 1

4
√

14 B1,3,0
4,2 + 1

2
√

2 B1,3,0
4,4

B−3
3x −

√
5

2
√

14 B1,3,0
2,−2 − 1

4
√

14 B1,3,0
4,−2 + 1

2
√

2 B1,3,0
4,−4

B0
3y

1√
70 B1,3,0

2,−1 + 1
2
√

7 B1,3,0
4,−1

B1
3y

1
2
√

70 B1,3,0
2,−2 + 3

4
√

14 B1,3,0
4,−2

B−1
3y −

√
3√
70 B1,3,0

2,0 − 1
2
√

70 B1,3,0
2,2 − 3

2
√

70 B1,3,0
4,0

− 3
4
√

14 B1,3,0
4,2

B2
3y

√
5√
14 B1,3,0

2,−1 + 3
4
√

7 B1,3,0
4,−1 + 3

4 B1,3,0
4,−3

B−2
3y −

√
5√
14 B1,3,0

2,1 − 3
4
√

7 B1,3,0
4,1 − 3

4 B1,3,0
4,3

B3
3y

√
5

2
√

14 B1,3,0
2,−2 + 1

4
√

14 B1,3,0
4,−2 + 1

2
√

2 B1,3,0
4,−4

B−3
3y −

√
5

2
√

14 B1,3,0
2,2 − 1

4
√

14 B1,3,0
4,2 − 1

2
√

2 B1,3,0
4,4

B0
3z −

√
3√
70 B1,3,0

2,0 +
√

2√
35 B1,3,0

4,0

9
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Table 5. (Continued.)

SH
term

Stevens,
parameter Linear function of tesseral tensor parameters

B1
3z −

√
2√
35 B1,3,0

2,1 + 3
4
√

7 B1,3,0
4,1

B−1
3z −

√
2√
35 B1,3,0

2,−1 + 3
4
√

7 B1,3,0
4,−1

B2
3z −

√
5√
14 B1,3,0

2,2 + 3√
14 B1,3,0

4,2

B−2
3z −

√
5√
14 B1,3,0

2,−2 + 3√
14 B1,3,0

4,−2

B3
3z

1
4 B1,3,0

4,3

B−3
3z

1
4 B1,3,0

4,−3

B S5 B−1
5y −

√
5

2
√

154 B1,5,0
4,0 − 1

2
√

154 B1,5,0
4,2 − 5

4
√

231 B1,5,0
6,0

−
√

5
6
√

22 B1,5,0
6,2

B2
5y

√
7

2
√

11 B1,5,0
4,−1 + 1

2
√

11 B1,5,0
4,−3 + 5

6
√

11 B1,5,0
6,−1

+
√

5√
22 B1,5,0

6,−3

B−2
5y −

√
7

2
√

11 B1,5,0
4,1 − 1

2
√

11 B1,5,0
4,3 − 5

6
√

11 B1,5,0
6,1

−
√

5√
22 B1,5,0

6,3

B3
5y

√
7

6
√

22 B1,5,0
4,−2 + 1

12
√

22 B1,5,0
4,−4 +

√
5

12
√

22 B1,5,0
6,−2

+ 5
8
√

35 B1,5,0
6,−4

B−3
5y −

√
7

6
√

22 B1,5,0
4,2 − 1

12
√

22 B1,5,0
4,4 −

√
5

12
√

22 B1,5,0
6,2

− 5
8
√

35 B1,5,0
6,4

B4
5y

3
2
√

11 B1,5,0
4,−3 +

√
5

4
√

22 B1,5,0
6,−3 + 5

4
√

6 B1,5,0
6,−5

B−4
5y − 3

2
√

11 B1,5,0
4,3 −

√
5

4
√

22 B1,5,0
6,3 − 5

4
√

6 B1,5,0
6,5

B5
5y

3
4
√

22 B1,5,0
4,−4 + 1

8
√

35 B1,5,0
6,−4 + 1

4
√

2 B1,5,0
6,−6

B−5
5y − 3

4
√

22 B1,5,0
4,4 − 1

8
√

35 B1,5,0
6,4 − 1

4
√

2 B1,5,0
6,6

B0
5z −

√
5

6
√

154 B1,5,0
4,0 + 1

2
√

231 B1,5,0
6,0

B1
5z − 1√

77 B1,5,0
4,1 + 5

12
√

11 B1,5,0
6,1

B−1
5z − 1√

77 B1,5,0
4,−1 + 5

12
√

11 B1,5,0
6,−1

B2
5z −

√
7√
22 B1,5,0

4,2 + 2
√

10
3
√

11 B1,5,0
6,2

B−2
5z −

√
7√
22 B1,5,0

4,−2 + 2
√

10
3
√

11 B1,5,0
6,−2

B3
5z − 1

3
√

11 B1,5,0
4,3 +

√
5

4
√

22 B1,5,0
6,3

B−3
5z − 1

3
√

11 B1,5,0
4,−3 +

√
5

4
√

22 B1,5,0
6,−3

B4
5z − 3

2
√

22 B1,5,0
4,4 + 5

2
√

35 B1,5,0
6,4

B−4
5z − 3

2
√

22 B1,5,0
4,−4 + 5

2
√

35 B1,5,0
6,−4

B5
5z

1
4
√

6 B1,5,0
6,5

B−5
5z

1
4
√

6 B1,5,0
6,−5

obtain the following full set of 14 required relationships, (24a)
and (24a), where the groupings highlight the division into two
irreducible tensorial sets of ranks 2 and 4. There are 14, and
only 14, C parameters but the equations are not unique—
there are other, equally valid, reductions of the C parameters
possible.

B0,1,3
2,0 =

√
15√
14

{Cx,xxx + Cy,yyy − Cz,zzz + Cx,xyy + Cy,yxx }

B0,1,3
2,1 = 3

√
5√

14
{Cx,zzz − Cz,xxx }

B0,1,3
2,−1 = 3

√
5√

14
{Cy,zzz − Cz,yzz} (24a)

Table 6. Redundancies among Stevens’ parameters defined in
equations (10).

SH term Redundancy equations among Stevens’ parameters

B S B1
1y = B−1

1x

B1
1z = B0

1x

B−1
1z = B0

1y

B S3 B1
3y = B−1

3x

2B1
3z = 6B0

3x + (B2
3x + B−2

3y )

2B−1
3z = 6B0

3y + (B−2
3x − B2

3y)

2B2
3z = 5(B1

3x − B−1
3y ) + 3(B3

3x + B−3
3y )

2B−2
3z = 10B−1

3x + 3(B−3
3x − B3

3y)

6B3
3z = B2

3x − B−2
3y

6B−3
3z = B−2

3x + B2
3y

B S5 B1
5y = B−1

5x

2B1
5z = 30B0

5x + (B2
5x + B−2

5y )

2B−1
5z = 30B0

3y + (B−2
5x − B2

5y)

2B2
5z = 7(B1

5x − B−1
5y ) + 6(B3

5x + B−3
5y )

2B−2
5z = 14B−1

5x + 6(B−3
5x − B3

5y)

6B3
5z = (B2

5x − B−2
5y ) + (B4

5x + B−4
5y )

6B−3
5z = (B−2

5x + B2
5y) + (B−4

5x − B4
5y)

4B4
5z = 9(B3

5x − B−3
5y ) + 5(B5

5x + B−5
5y )

4B−4
5z = 9(B−3

5x + B3
5y) + 5(B−5

5x − B5
5y)

10B5
5z = B4

5x − B−4
5y

10B−5
5z = B−4

5x + B4
5y

B0,1,3
2,2 = 3

√
10

2
√

7
{Cx,xyy − Cy,yxx }

B0,1,3
2,−2 = 3

√
10

2
√

7
{Cx,yyy − Cy,xyy}

B0,1,3
4,0 = 3

√
5

2
√

14
{Cx,xxx + Cy,yyy

+ 4
3 Cz,zzz + Cx,xyy + Cy,yxx}

B0,1,3
4,1 = 1√

7
{4Cx,zzz + 3Cz,xzz }

B0,1,3
4,−1 = {4Cy,zzz + 3Cz,yzz}

B0,1,3
4,2 = − 1√

14
{7(Cx,xxx − Cy,yyy) + 9(Cx,xyy − Cy,yxx )}

B0,1,3
4,−2 = − 2√

14
{6Cy,xyy + 7Cy,xxx + Cx,yyy} (24b)

B0,1,3
4,3 = 4Cz,xxx + 3Cz,xzz

B0,1,3
4,−3 = −{4Cz,yyy + 3Cz,yzz}

B0,1,3
4,4 = 1

2
√

2
{Cx,xxx + Cy,yyy − 3(Cx,xyy + Cy,yxx )}

B0,1,3
4,−4 = √

2{Cy,xxx − Cx,yyy}.
From equations (24) the appropriate expressions for

specific higher-symmetry Laue classes can be written down

10
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from knowledge of the TSTOs that transform as the totally-
symmetric irreducible representation under the symmetry
operations of the class [17, 19, 2]; these transformation
properties depend only on the subscripts k, q and are
independent of superscripts k1, k2 and k3. For example, the
expression for orthorhombic symmetry (D2h or mmm Laue
class) is, from (24), just the sum of those terms that contain
B2,0, B2,2, B4,0, B4,2 and B4,4 only. These terms are

B0,1,3
2,0 =

√
15√
14

{Cx,xxx + Cy,yyy − Cz,zzz + Cx,xyy + Cy,yxx }

B0,1,3
2,2 = 3

√
10

2
√

7
{Cx,xyy − Cy,yxx }

B0,1,3
4,0 = 3

√
5

2
√

14
{Cx,xxx + Cy,yyy

+ 4
3 Cz,zzz + Cx,xyy + Cy,yxx }

B0,1,3
4,2 = − 1√

14
{7(Cx,xxx − Cy,yyy) + 9(Cx,xyy − Cy,yxx )}

B0,1,3
4,4 = 1

2
√

2
{Cx,xxx + Cy,yyy − 3(Cx,xyy + Cy,yxx )}.

(25a)

Equations (25a) contain, as required 5 (and only 5) C
parameters that are related linearly to the 5 tesseral B
parameters. It must be emphasized that these equations are
not unique; they are one of many equivalent combinations of
C parameters themselves related by the redundancy equations
of table 2. Concomitantly, a SH for SI 3 terms expressed in
Cartesian tensor form will not be unique. We have not indeed,
at this stage, attempted to specify a Cartesian SH for SI 3 terms
but, as for the tensors of rank 2 considered in section 2.2, it is
clear, utilizing the relationships of (25a), that the TSTO SH for
mmm Laue class from table 1, namely

H 0,1,3
S = 1√

7
B0,1,3

2,0 {−√
3Sz�0,1,3

3,0 (I)

− √
2[Sx�0,1,3

3,1 (I) + Sy�0,1,3
3,−1(I)]}

+ 1√
42

B0,1,3
2,2 {Sx�0,1,3

3,1 (I) − Sy�0,1,3
3,−1(I)

− √
10Sz�0,1,3

3,2 (I) − √
15[Sx�0,1,3

3,3 (I) + Sy�0,1,3
3,−3(I)]}

+ 1√
14

B0,1,3
4,0 {2√

2Sz�0,1,3
3,0 (I)

− √
3[Sx�0,1,3

3,1 (I) + Sy�0,1,3
3,−1(I)]}

+ 1

2
√

14
B0,1,3

4,2 {√15[Sx�0,1,3
3,1 (I) − Sy�0,1,3

3,−1(I)]
+ 2

√
6Sz�0,1,3

3,2 (I) − [Sx�0,1,3
3,3 (I) + Sy�0,1,3

3,−3(I)]}
+ 1√

2
B0,1,3

4,4 {Sx�0,1,3
3,3 (I) − Sy�0,1,3

3,−3(I)} (25b)

is sufficient to cover both cases. The equations appropriate
to D4h or 4/mmm Laue class may be obtained similarly or,
from (25a), taking C⊥ = Cx,xxx = Cy,yyy, C‖ = Cz,zzz and

Cy,yxx = Cx,xyy . Then, we obtain

B0,1,3
2,0 =

√
15√
14

{2C⊥ − C‖ + 2Cx,xyy}

B0,1,3
4,0 = 3

√
5√

14

{
C⊥ + 2

3
C‖ + Cx,xyy

}

B0,1,3
4,4 = 1√

2
{C⊥ − 3Cx,xyy}

(26a)

where the three B parameters are related linearly to 3 (and 3
only) Cartesian C parameters and the TSTO equation (26b)
(cf equations (13)) appropriate to uniaxial (tetragonal, D4h)
symmetry is sufficient to cover both cases.

H 0,1,3
S = 1√

7
B0,1,3

2,0 {−√
3Sz�0,1,3

3,0 (I)

− √
2[Sx�0,1,3

3,1 (I) + Sy�0,1,3
3,−1(I)]}

+ 1√
14

B0,1,3
4,0 {2√

2Sz�0,1,3
3,0 (I)

− √
3[Sx�0,1,3

3,1 (I) + Sy�0,1,3
3,−1(I)]}

+ 1√
2

B0,1,3
4,4 {Sx�0,1,3

3,3 (I) − Sy�0,1,3
3,−3(I)}. (26b)

Again, the relationships of equations (26a) are not unique.
Although the reduction algebra involved is considerably

more tedious, the sixth rank tensors of dimension SI 5 can be
handled similarly.

3.2. The SH for higher-order spin terms expressed in
Cartesian tensor form

As noted in section 3.1, it is not possible to write a unique SH
for such terms in Cartesian tensor form. It is, nevertheless,
instructive to construct such a SH and we now do this for
the three Laue classes, 1̄, mmm and 4/mmm, of section 3.1.
We start by considering first the lowest symmetry, 1̄, and
write the Cartesian SH (again) for terms of dimension SI 3,
taking into account contractions arising from the permutation
of coefficients but retaining all operator permutations to allow
for non-commutativity of the operators Ix , Iy and Iz in the
functions Ŝ j I� Im In . After applying all 16 of the redundancy
equations of table 2 we arrive at a SH expression containing
14 only C parameters. This expression is rather cumbersome
and we shall not reproduce it here. For orthorhombic, D2h

symmetry, the further contraction is relatively simple and we
obtained the following equation

H 0.1.3
S = Cx,xxx Ŝx{I 3

x − [I 2
z Ix + Iz Ix Iz + Ix I 2

z ]}
+ Cy,yyy Ŝy{I 3

x − [I 2
x Iy + Ix Iy Ix + Iy I 2

x ]}
+ Cz,zzz Ŝz{I 3

z − [I 2
y Iz + Iy Iz Iy + Iz I 2

y ]}
+ Cx,xyy Ŝx{[I 2

y Ix + Iy Ix Iy + Ix I 2
y ]

− [I 2
z Ix + Iz Ix Iz + Ix I 2

z ]}
+ Cy,yzz Ŝz{[I 2

z Iy + Iz Iy Iz + Iy I 2
z ]

− [I 2
x Iy + Ix Iy Ix + Iy I 2

x ]}
+ Cz,zxx Ŝz{[I 2

x Iz + Ix Iz Ix + Iz I 2
x ]

− [I 2
y Iz + Iy Iz Iy + Iz I 2

y ]} (27)

11
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in terms of 6 parameters. Equations (27) can be reduced
to the required 5 parameters by the substitutions Cy,yzz =
−Cy,yxx − Cy,yyy and Cz,zxx = − 1

2 (Cx,xxx − Cy,yyy +
Cz,zzz) − Cx,xyy + Cy,yxx utilizing the second and fourth
BS3(I S3) redundancy equations respectively of table 2.
Thus (27) is a Cartesian equation of 5 independent parameters,
Cx,xxx , Cy,yyy, Cz,zzz , Cx,xyy and Cy,yxx . The equation is, of
course, not unique but the choices made enable to match the
same 5 C parameters that are related linearly to 5 tesseral B
parameters of equations (25a). The corresponding equation
for tetragonal, D4h symmetry, may be obtained similarly or,
simply by writing Cx,xxx = Cy,yyy = C⊥, Cz,zzz = C‖
and Cy,yxx = Cx,xyy where the resulting equation matches
in number and type the three independent C parameters of
equations (26a).

3.3. A consideration of SHs containing mixed TSTO,
Cartesian and Stevens’ forms

A good place to start is a consideration of a recent paper [20]
that measured and analysed the complex hyperfine structure
of 47Ti and 49Ti isotopes in 15 K X-band spectra of a Ti3+
centre in tetragonal zircon. In this study, in addition to the
standard second rank ‘tensor’ terms of equation (5), all terms
of the types B I 3, B I 5, SI 3, SI 5 and I 4 were found necessary
to describe adequately the hyperfine structure. A feature of
the observed spectra was a marked angular dependence of the
titanium hyperfine lines in the perpendicular, ab crystal plane,
even although the Ti3+ ion was clearly from the observed
g and A matrices in a site of tetragonal symmetry. The
spectra were analysed with international programme EPR-
NMR [10] where equation (5) is used to describe second
rank ‘tensor’ quantities, Stevens’ operators to describe ZFS
terms of dimension I 4 (actually EPR-NMR allows ZFS terms
to be expressed optionally in TSTO form) and TSTOs to
describe higher-spin terms, B I n, SI n (n = 3, 5). It has
been suggested [9] that such a mixed SH is invalid when the
higher-order terms are present and could, depending on relative
magnitudes of derived parameters, lead to false values of, for
example, g and A principal values.

In section 2.2 we showed that equation (5) can be
replaced by an equivalent expression framed in TSTOs since
the parameters of the two forms are related linearly to one
another. For any specific site symmetry there are equal
numbers of independent Cartesian parameters and independent
TSTO coefficients. This information is relatively well known
already [16, 1]. Similarly, the parameters of Cartesian
and STSO forms for higher-order terms of dimensions
B J n, J1 J n

2 , J n
1 J2 (n = 3, 5) are, from sections 2.3 and 2.4,

also linearly related. It follows that there is no more difficulty
in relating the parameters in the two nomenclatures for such
higher-order terms than there is for the second rank tensors
of equation (5)—provided one compares equivalent SHs. The
generation of equivalent Hamiltonians for any Laue class is
outlined in section 3.2 above.

That use of a mixed Hamiltonian might lead to erroneous
values of principal values of g and/or A (see again [9]) does not
seem to be correct. It is true, taking electronic Zeeman terms as

example, that inclusion of higher-order terms, BS3, BS5, . . .,
will influence the g principal values to a minor extent because
the operators involved span the same ket vectors and there
will be matrix elements containing parameters from all three
electronic Zeeman-type terms. The effect is to make the g
parameter matrix slightly more anisotropic than it would be in
the absence of the higher-spin terms. This, from the preceding
discussion, is independent of whether one utilizes a mixed SH
or one framed completely in TSTOs.

What is the significance of the parameters produced
in terms of electron–nuclear interactions? So far as terms
in equation (5) are concerned, the relationships between
a theoretical Hamiltonian, in terms of electron–nuclear
interactions, and the experimental, or spin Hamiltonian are
well established—see, in particular, Bleaney and Stevens [21].
It follows immediately from equations (8) that relationships
are easily established between theory and a SH expressed in
TSTO form. The same is true of ZFS terms of dimension
J n (n = 2, 4, 6 . . .), traditionally set up from the theory
of the crystalline electric field, in terms of Stevens’ operator
equivalents. The equivalent relationships to the TSTO ZFS SH
are, from section 2.4 and table 5, also easily established.

It can, thus, be stated unequivocally, that use of a
mixed SH of Cartesian second rank (symmetric) ‘tensors’,
Stevens’ operator ZFS terms and TSTO higher-spin nuclear
and/or electronic terms is perfectly valid, and there are no
redundancies involved. Using the equations and tables of this
paper, one can convert the parameters of any one of the forms
to those of any other. This can be done, moreover, for any
specified Laue class.

3.4. The importance (or otherwise) of higher-spin Zeeman
and nuclear terms in EPR of ions with S � 3/2; I > 0

Since a large portion of this paper is devoted to the analytical
forms of higher-spin electronic and nuclear terms in the SH we
should discuss, albeit briefly, their significance (or otherwise)
in EPR studies in EPR of transition ions. Let it be said
at the outset that such interest has been at best spasmodic
and restricted to small groups of experimentalists. There are,
however, sufficient points of interest that would warrant the
time and effort spent in calculating the appropriate analytical
forms of the terms and including them in a general matrix-
diagonalization-refinement programme—for example [11].

Bleaney [22] and Koster and Statz [14] first pointed
out that acceptance of symmetry-allowed SH terms of the
form B�B S�S I �I (�B + �S + �I = � = even) where �S �
2S, �I � 2I could include, generally, higher-degree Zeeman
terms of dimensions B J n(n = 3, 5) and/or higher-spin
terms of dimensions J1 J n

2 , J n
1 J2 (J1, J2 = S, I ; n = 3, 5).

Considerable interest followed almost immediately thereafter,
particularly for studies of Co2+ in sites of cubic symmetry
in certain crystals [23] (see also [1] for brief summary with
further references). Reference [1] pointed out that one should
be sceptical of claimed detection of such terms if the SH
utilized does not contain all terms required for a given site
symmetry or, furthermore, may have used a perturbation
approach in which some higher-order terms were neglected.
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A couple of studies in which the present authors were involved
will illustrate some of the consequences of appearance of some
high-spin terms.

In a 10 K X-band study of Fe3+ in 1̄ sites in CaWO4 [24]
evidence was found for rather large magnitude terms of
dimension BS3 and BS5, these being necessary to obtain
a good fit to the data using EPR-NMR [10]. The main
features observed that were attributable to the inclusion of the
high-spin terms: a 20-fold diminution in the RMSD between
observed and calculated line positions; a marked increase
in the anisotropy of the g principal values; a fitted cos 4θ

angular dependence of geff = 4.3 lines that is dependent on
the inclusion of high-spin Zeeman terms in the SH; a set of
four three-fold pseudo-symmetry axes [25, 26] that are, within
error, common to the tensor sets B1,3

4,m, B1,5
4,m and B1,5

6,m .
The second study [20, 27] (see section 3.3) involved 10 K

X-band measurements on a Ti3+ d1 centre in tetragonal zircon;
the site symmetry of Ti3+ is 4̄2m(D2d) tetragonal. (It should
be noted that the dimensioned high-spin parameters of table 2
of [20] are in units 1/geμB Gauss and not mT as stated.
The conclusions of the paper are not affected thereby.) To
account for all of the features of the spin system(s) S =
1/2, I = 5/2 (47Ti isotope) and S = 1/2, I = 7/2 (49Ti
isotope) it was necessary to include terms of the following
types: B I n(n = 3, 5), SI n(n = 3, 5) and I 4. The effects of
the terms on the observed EPR spectra were rather subtle but
certainly not trivial: (i) a marked cos 4θ angular dependence
of both line positions and line intensities in the perpendicular
(ab plane) crystal orientation that can arise only from operators
�k,m(I)(k = 4, 6; m = 0, 4) and would be absent in the
conventional uniaxial SH; (ii) an apparent anisotropy in the
nuclear Zeeman interaction that was identified with anisotropy
in the chemical-shielding tensor, σ ; (iii) an experimental ratio
47P‖/49P‖ that is in very good agreement with that calculated
from the corresponding nuclear quadrupole moments—the
agreement in the absence of high-spin terms is rather poor.

We might conclude from these two studies the following.
Firstly, for some transition ion systems, provided the
measurements are precise enough, the electronic and nuclear
Zeeman interactions are described by all three types of terms,
BS, BS3 and BS5 and B I, B I 3 and B I 5 respectively and not
simply the traditional linear magnetic-field term of first degree,
This raises the question: do the two tensors (parameter sets)
from BS3 and BS5 terms have pseudo-2-fold axes related to
the principal directions of g? Secondly all so-called second
rank ‘tensor’ quantities of equation (1) can be influenced to
some extent by inclusion of higher-order spin terms. As noted
in section 3.3, inclusion of high-spin Zeeman terms in the SH
leads to the result that the g and/or gn matrices appear more
anisotropic than in the absence of such terms. The inclusion
can also, for the A parameter matrix lead to a so-called
‘hyperfine anomaly’ and for the nuclear electric quadrupole
and nuclear g matrices to so-called pseudo-quadrupole and
pseudo-nuclear Zeeman interactions respectively.

The two studies above both utilized ‘mixed’ SHs. From
section 2.3, this would seem not to be an erroneous procedure.
Whatever then may be the shortcomings of the two analyses,
the use of an incorrect SH is, we believe, not one of them. We

concede, however, that a SH framed completely in TSTO form
might be more satisfying.

A few concluding remarks regarding occurrence of high-
spin terms are pertinent. In order to establish that the
parameters determined for the, usually, small interactions that
are the subject of this paper are meaningful, one needs to
show that they are statistically significant and can, ideally,
be related to other known physical quantities. The first
of these would, generally, demand a large number of very
precise data points collected in a three-dimensional single-
crystal study [7, 8, 16, 20, 24], with parameter refinement by
matrix diagonalization procedures [11]. A couple of examples
of the second criterion, the relationships of quadrupole
terms to nuclear quadrupole moments, and relationship of
an anisotropic nuclear g interaction to the chemical-shielding
tensor are given in the Ti3+/zircon study above [20]. Although
one might perhaps regard such effects as being low symmetry
related, we note that in the Fe3+/scheelite study [24] the
site symmetry was indeed low, namely 1̄, but in the second
study [20] the site symmetry was D2d tetragonal.
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Appendix

The tables in this paper have been restricted, in the interests of
brevity, to those, in the main, giving relationships for tensors
of ranks � 4. We have, however, full tables including tensors
of ranks 6. The authors undertake to make the full set of tables
available as PDF files to interested readers.
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